晶硅电池在过去20年里有了很大发展,许多新技术的采用和引入使太阳电池效率有了很大提高。在早期的硅电池研究中,人们探索各种各样的电池结构和技术来改进电池性能,如背表面场,浅结,绒面,氧化膜钝化,Ti/Pd金属化电极和减反射膜等。后来的高效电池是在这些早期实验和理论基础上的发展起来的。
单晶硅高效电池
单晶硅高效电池的典型代表是斯但福大学的背面点接触电池(PCC),新南威尔士大学(UNSW)的钝化发射区电池(PESC,PERC,PERL以及德国Fraumhofer太阳能研究所的局域化背表面场(LBSF)电池等。
我国在“八五”和“九五”期间也进行了高效电池研究,并取得了可喜结果。近年来硅电池的一个重要进展来自于表面钝化技术的提高。从钝化发射区太阳电池(PESC)的薄氧化层(<10nm)发展到PCC/PERC/PER1。电池的厚氧化层(110nm)。此外,表面V型槽和倒金字塔技术,双层减反射膜技术的提高和陷光理论的完善也进一步减小了电池表面的反射和对红外光的吸收。低成本高效硅电池也得到了飞速发展。
(1)新南威尔士大学高效电池
(A)钝化发射区电池(PESC):PESC电池1985年问世,1986年V型槽技术又被应用到该电池上,效率突破20%。V型槽对电池的贡献是:减少电池表面反射;垂直光线在V型槽表面折射后以41”角进入硅片,使光生载流子更接近发射结,提高了收集效率,对低寿命衬底尤为重要;V型槽可使发射极横向电阻降低3倍。由于PESC电池的最佳发射极方块电阻在150 Ω/口以上,降低发射极电阻可提高电池填充因子。
在发射结磷扩散后,Al层沉积在电池背面,再热生长10nm表面钝化氧化层,并使背面Al和硅形成合金,正面氧化层可大大降低表面复合速度,背面Al合金可吸除体内杂质和缺陷,因此开路电压得到提高。早期PESC电池采用浅结,然而后来的研究证明,浅结只是对没有表面钝化的电池有效,对有良好表面钝化的电池是不必要的,而氧化层钝化的性能和铝吸除的作用能在较高温度下增强,因此最佳PEsC电池的发射结深增加到1µm左右。值得注意的是,目前所有效率超过20%的电池都采用深结而不是浅结。浅结电池已成为历史。
PEsC电池的金属化由剥离方法形成Ti-pd接触,然后电镀Ag构成。这种金属化有相当大的厚/宽比和很小的接触面积,因此这种电池可以做到大子83%的填充因子和20.8%(AM1.5)的效率。
(B)钝化发射区和背表面电池(PERC):铝背面吸杂是PEsC电池的一个关键技术。然而由于背表面的高复合和低反射,它成了限制PESC电池技术进一步提高的主要因素。PERC和PERL电池成功地解决了这个问题。它用背面点接触来代替PEsC电池的整个背面铝合金接触,并用TCA(氯乙烷)生长的110nm厚的氧化层来钝化电池的正表面和背表面。TCA氧化产生极低的界面态密度,同时还能排除金属杂质和减少表面层错,从而能保持衬底原有的少子寿命。由于衬底的高少子寿命和背面金属接触点处的高复合,背面接触点设计成2mm的大间距和2001Lm的接触孔径。接触点间距需大于少子扩散长度以减小复合。这种电池达到了大约700mV的开路电压和22.3%的效率。然而,由于接触点间距太大,串联电阻高,因此填充因子较低。
(C)钝化发射区和背面局部扩散电池(PERL):在背面接触点下增加一个浓硼扩散层,以减小金属接触电阻。由于硼扩散层减小了有效表面复合,接触点问距可以减小到250µm、接触孔径减小到10µm而不增加背表面的复合,从而大大减小了电池的串联电阻。PERL电池达到了702mV的开路电压和23.5%的效率。PERC和PER1。电池的另一个特点是其极好的陷光效应。由于硅是间接带隙半导体,对红外的吸收系数很低,一部分红外光可以穿透电池而不被吸收。理想情况下入射光可以在衬底材料内往返穿过4n2次,n为硅的折射率。PER1。电池的背面,由铝在SiO2上形成一个很好反射面,入射光在背表面上反射回正表面,由于正表面的倒金字塔结构,这些反射光的一大部分又被反射回衬底,如此往返多次。Sandia国家实验室的P。Basore博士发明了一种红外分析的方法来测量陷光性能,测得PERL电池背面的反射率大于95%,陷光系数大于往返25次。因此PREL电池的红外响应极高,也特别适应于对单色红外光的吸收。在1.02µm波长的单色光下,PER1。电池的转换效率达到45.1%。这种电池AM0下效率也达到了20.8%。
(D)埋栅电池:UNSW开发的激光刻槽埋栅电池,在发射结扩散后,用激光在前面刻出20µm宽、40µm深的沟槽,将槽清洗后进行浓磷扩散。然后在槽内镀出金属电极。电极位于电池内部,减少了栅线的遮蔽面积。电池背面与PESC相同,由于刻槽会引进损伤,其性能略低于PESC电池。电池效率达到19.6%。
(2)斯但福大学的背面点接触电池(PCC)
点接触电池的结构与PER1。电池一样,用TCA生长氧化层钝化电池正反面。为了减少金属条的遮光效应,金属电极设计在电池的背面。电池正面采用由光刻制成的金字塔(绒面)结构。位于背面的发射区被设计成点状,50µm间距,10µm扩散区,5µm接触孔径,基区也作成同样的形状,这样可减小背面复合。衬底采用n型低阻材料(取其表面及体内复合均低的优势),衬底减薄到约100µm,以进一步减小体内复合。这种电池的转换效率在AM1.5下为22.3%。
(3)德国Fraunhofer太阳能研究所的深结局部背场电池(LBSF)
LBSF的结构与PERL电池类似,也采用TCA氧化层钝化和倒金字塔正面结构。由于背面硼扩散一般造成高表面复合,局部铝扩散被用来制作电池的表面接触,2cm*2cm电池电池效率达到23.3%(Voc=700mV,Isc-~41.3mA,FF一0.806)。
4)日本sHARP的C一Si/µc-Si异质pp+结高效电池
SHARP公司能源转换实验室的高效电池,前面采用绒面织构化,在SiO2钝化层上沉积SiN为A只乙后面用RF-PECVD掺硼的µc一Si薄膜作为背场,用SiN薄膜作为后表面的钝化层,Al层通过SiN上的孔与µcSi薄膜接触。5cmX5cm电池在AM1.5条件下效率达到21.4%(Voc=669mV,Isc=40.5mA,FF=0.79)。
(5)我国单晶硅高效电池
天津电源研究所在国家科委“八五”计划支持下开展高效电池研究,其电池结构类似UNSw的V型槽PEsC电池,电池效率达到20.4%。北京市太阳能研究所“九五”期间在北京市政府支持下开展了高效电池研究,电池前面有倒金字塔织构化结构,2cmX2cm电池效率达到了19.8%,大面(5cmX5cm)激光刻槽埋栅电池效率达到了18.6%。
多晶硅高效电池
多晶硅太阳电池的出现主要是为了降低成本,其优点是能直接制备出适于规模化生产的大尺寸方型硅锭,设备比较简单,制造过程简单、省电、节约硅材料,对材质要求也较低。晶界及杂质影响可通过电池工艺改善;由于材质和晶界影响,电池效率较低。电池工艺主要采用吸杂、钝化、背场等技术。
近年来吸杂工艺再度受到重视,包括三氯氧磷吸杂及铝吸杂工艺。吸杂工艺也在微电子器件工艺中得到应用,可见其对纯度达到一定水平的单晶硅硅片也有作用,但其所用的条件未必适用于太阳电池,因而要研究适合太阳电池专用的吸杂工艺。研究证明,在多晶硅太阳电池上,不同材料的吸杂作用是不同的,特别是对碳含量高的材料就显不出磷吸杂的作用。有学者提出了磷吸杂模型,即吸杂的速率受控干两个步骤:①金属杂质的释放/扩散决定了吸杂温度的下限;②分凝模型控制了吸杂的最佳温度。另有学者提出,在磷扩散时硅的自间隙电流的产生是吸杂机制的基本因素。
常规铝吸杂工艺是在电池的背面蒸镀铝膜后经过烧结形成,也可同时形成电池的背场。近几年在吸杂上的工作证明,它对高效单晶硅太阳电池及多晶硅太阳电池都会产生一定的作用。
钝化是提高多晶硅质量的有效方法。一种方法是采用氢钝化,钝化硅体内的悬挂键等缺陷。在晶体生长中受应力等影响造成缺陷越多的硅材料,氢钝化的效果越好。氢钝化可采用离子注入或等离子体处理。在多晶硅太阳电池表面采用pECVD法镀上一层氮化硅减反射膜,由于硅烷分解时产生氢离子,对多晶硅可产生氢钝化的效果。
在高效太阳电池上常采用表面氧钝化的技术来提高太阳电池的效率,近年来在光伏级的晶体硅材料上使用也有明显的效果,尤其采用热氧化法效果更明显。使用PECVD法在更低的温度下进行表面氧化,近年来也被使用,具有一定的效果。
多晶硅太阳电池的表面由于存在多种晶向,不如(100)晶向的单晶硅那样能经由腐蚀得到理想的绒面结、构,因而对其表面进行各种处理以达减反射的作用也为近期研究目标,其中采用多刀砂轮进行表面刻槽,对10cmX10cm面积硅片的工序时间可降到30秒,具有了一定的实用潜力。
多孔硅作为多晶硅太阳电池的减反射膜具有实用意义,其减反射的作用已能与双重减反射膜相比,所得多晶硅电池的效率也能达到13。4%。我国北京有色金属研究总院及中科院感光化学研究所共同研制的在丝网印刷的多晶硅太阳电池上使用多孔硅也已达到接近实用的结果。
由于多晶硅材料制作成本低于单晶硅cZ材料,因此多晶硅组件比单晶硅组件具有更大的降低成本的潜力,因而提高多晶硅电池效率的研究工作也受到普遍重视。近10年来多晶硅高效电池的发展很快,其中比较有代表性的工作是Geogia Tech电池,UNSW电池,Kysera电池等。
(1)Geogia Tech电池
Geogia工业大学光伏中心使用电阻率0.65 Ωcm、厚度280µm的HEM(热交换法)多晶硅片制作电池,n+发射区的形成和磷吸杂结合,采用快速热过程制备铝背场,用lift一off法制备Ti/Pd/Ag前电极,并加双层减反射膜。1cm2电池的效率AM1.5下达到18.6%。
(2)UNSw电池
uNsw光伏中心的高效多晶硅电池工艺基本上与PER1。电池类似,只是前表面织构化不是倒金字塔,而是用光刻和腐蚀工艺制备的蜂窝结构。多晶硅片由意大利的Eurosolare提供,lcm2电池的效率AMI·5下,达到19.8%,这是目前水平最高的多晶硅电池的研究结果。该工艺打破了多晶硅电池不适合采用高温过程的传统观念。
(3)Kysera电池
日本ky0cera公司在多晶硅高效电池上采用体钝化和表面钝化技术,PECVD SiN膜既作为减反射膜,又作为体钝化措施,表面织构化采用反应性粒子刻边技术。背场则采用丝印铝奖烧结形成。电池前面栅线也采用丝印技术。15cmX15cm大面积多晶硅电池效率达17.1%。目前日本正计划实现这种电池的产业化。
(4)我国多晶硅电池
北京有色金属研究总院在多晶硅电池方面作了大量研究工作,目前10cmX10cm电池效率达到11.8%。北京市太阳能研究所在“九五”期间开展了多晶硅电池研究,1cm2电池效率达到14·5%。我国中试生产的10cmX10cm多晶硅太阳电池的效率为10一11%,最高效率为12%。
特别声明:索比光伏网转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。凡来源注明索比光伏网或索比咨询的内容为索比光伏网原创,转载需获授权。