
论文总览
针对钙钛矿/硅叠层太阳能电池中钙钛矿/电子传输层界面存在的非辐射复合与离子迁移等关键性能瓶颈,卡尔斯鲁厄理工学院Ulrich W. Paetzold团队提出了一种创新的 AlOX/PDAI2双层钝化策略。通过原子层沉积(ALD)制备超薄 AlOₓ 膜抑制界面缺陷与离子迁移,并结合溶液处理丙烷-1,3-二铵碘化物(PDAI₂)实现能级调控与 n 型掺杂,该策略有效优化了能级对齐、降低了界面缺陷密度并提升了电荷提取效率。所制备的叠层器件实现了 31.6% 的功率转换效率(认证效率 30.8%),在 85 °C 黑暗环境中老化 1000 小时后仍保持 92% 的初始效率,并在最大功率点追踪 1000 小时后保持 95% 的性能稳定性。相关成果以"Interfacial Design Strategies for Stable and High-performance Perovskite/Silicon Tandem Solar Cells on Industrial Silicon cells"为题发表在Nature Communications期刊上。
核心技术亮点
➤ 创新双层钝化设计:采用1 nm AlOX+PDAI2的双层结构,实现界面能级精确调控,抑制离子迁移并降低缺陷态密度,显著削弱非辐射复合。
➤ 高效率与工业兼容性:基于Q-ANTUM工业硅底电池,实现31.6%的PCE(认证30.8%),为工业路线的高效叠层提供了切实可行的解决方案。
➤ 理论与实验结合的界面机理解析:结合QFLS分析、UPS、DFT和漂移-扩散模拟,系统揭示了AlOX+PDAI2层在能级匹配、电荷密度与复合抑制中的作用机制。
➤ 稳定性显著提升:通过有效抑制离子迁移和界面劣化,实现长达1000 h的优异热稳定性和操作稳定性,为产业化应用扫清障碍。
图文分析

LiF钝化下器件的性能损失机制:
图1a展示了研究的钙钛矿/硅叠层太阳能电池器件结构。图1b通过绝对光致发光光谱和光热偏转光谱测量,揭示了钙钛矿薄膜的带隙(约1.68eV)和Urbach能量(24meV),表明材料存在带边局域态。图1c显示准费米能级分裂(QFLS)测量结果,发现C60沉积导致QFLS显著降低(从1.267V降至1.127V),表明钙钛矿/C60界面存在严重的非辐射复合。图1d总结了FF损失分析,显示AlOx/PDAI2处理样品具有最低的传输损失(5.1%)。图1e展示了器件在85°C黑暗环境中的稳定性表现,LiF钝化器件在1000小时后仅保留74.5%的初始效率。

DFT计算揭示双层钝化的能级调控:
图2a展示了双层钝化策略的示意图。图2b-c的差分电荷密度图显示AlOx与钙钛矿表面原子之间存在显著电荷转移。图2d-e的PDOS分析表明,AlOx处理显著降低了FAI和PbI终止钙钛矿价带边缘的陷阱态密度。图2f通过UPS显示了不同处理样品的能级对齐情况,AlOx/PDAI2处理使费米能级上移,表现出n型掺杂行为。图2g-h展示了AlOx/PDAI2处理后的能级图和漂移扩散模拟结果,表明优化的能级对齐改善了电荷提取效率。

界面化学作用与形貌特征:
XPS光谱(图3a-c)证实了AlOx和PDAI2成功修饰钙钛矿表面,Al 2p峰位于74.8eV,N 1s轨道显示PDA配体的成功掺入,且所有表面改性后Pb°信号完全消失。光致发光成像(图3d-k)显示AlOx处理样品在C60沉积后仍保持较高的PL强度,表明界面缺陷密度显著降低。AFM图像(图3l-o)揭示了关键形貌特征:PDAI2在钙钛矿表面形成均匀薄膜;ALD-AlOx在晶粒表面均匀分布,同时在晶界处形成岛状结构;AlOx/PDAI2处理后晶界处岛状AlOx密度显著降低,为PDAI2与钙钛矿的直接接触提供了纳米级通道。

器件性能与稳定性验证:
图4a的损失分析表明双层钝化将钙钛矿/ETL界面的VOC损失从125mV降至9mV,传输电阻导致的FF损失从4.2%降至2.1%。图4b的J-V曲线显示AlOx/PDAI2基叠层太阳能电池实现了31.6%的最高效率,具有19.91mA cm⁻²的短路电流密度、1.96V的VOC和81.0%的FF。图4c显示稳定功率输出达到31.3%。图4d的热稳定性测试表明,AlOx/PDAI2器件在85°C1000小时后仍保持92%的初始效率,显著优于单一钝化器件。图4e的操作稳定性测试显示,AlOx/PDAI2器件在1000小时MPPT后仅衰减5%。图4f-i的DFT计算局部静电势分析揭示了AlOx形成电子富集特性,建立了抑制离子迁移的势垒。
文献来源
Fang, M. Ren, B. Li, et al., Interfacial Design Strategies for Stable and High-Performance Perovskite/Silicon Tandem Solar Cells on Industrial Silicon Cells. Nat. Commun. (2025), 16, 8881.
https://doi.org/10.1038/s41467-025-64467-y
仅用于学术分享,如有侵权,请联系删除。
索比光伏网 https://news.solarbe.com/202510/09/50009791.html

