太阳能发电被认为是发电方法中对环境无损害的,并且被认为是将来最具有可发展的。
太阳能发电的基础就是接收光然后效率重新的转化电力。当Yana V奥运年走访,芝加哥大学研究院报告中说,共轭聚合物是这个系统的绝好材料,因为他们有良好吸光性和导电属性。
不幸的是,这些材料的第消耗使他们的效果很好,光产生的电荷使电子束缚在一起,重新组合,他们可以集合电力。
Solar energy is an environmentally-friendly way of producing electricity and is considered to be one of the most appealing options for the future.
The basis for solar energy is absorbing light and then effectively disassociating electrical charges. As Yana Vaynzof, a University of Cambridge researcher, reports in the American Institute of Physics' Applied Physics Letters, conjugated polymers are excellent materials for such a system, thanks to their light absorption and conduction properties.
Unfortunately, poor charge disassociation in these materials tends to inhibit their performance. Photo-induced charges remain closely bound and recombine before they can be collected for electricity.
With a goal of working around this, Vaynzof and colleagues studied the charge disassociation at an interface between an organic polymer, in which the light is absorbed, and an inorganic oxide layer.
"In particular, we discovered that modifying the interface with a self-assembled monolayer of molecules results in an increase of charge disassociation efficiency to nearly 100 percent," says Vaynzof.
"Our measurements revealed that the molecular modification alters the energetic landscape of the interface so that the light absorbed in its vicinity is disassociated into charges that are then swept far from each other - preventing them from recombination, much like two balls rolling away from each other on opposite sides of a hill."
This has significant implications for the organic solar cell industry because it offers an interesting solution to one of the field's most significant problems.
特别声明:索比光伏网转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。凡来源注明索比光伏网或索比咨询的内容为索比光伏网原创,转载需获授权。
图片正在生成中...
太阳能发电被认为是发电方法中对环境无损害的,并且被认为是将来最具有可发展的。 太阳能发电的基础就是接收光然后效率重新的转